Quand des gouttes pulsent en dessinant des fleurs…

Comment une goutte d’huile évolue-t-elle lorsqu’on la pose sur de l’eau ? Le plus souvent elle s’étale. Elle peut aussi, de par ses propriétés chimiques, modifier ultérieurement la surface de l’eau, adoptant alors des comportements inattendus. Véronique Pimienta, enseignante-chercheuse dans l’équipe IDeAS du laboratoire Softmat, et des hydrodynamiciens de l’IMFT ont découvert et expliqué l’évolution spectaculaire et particulièrement esthétique d’une goutte de dichlorométhane, un solvant très commun, obtenue en ajoutant dans l’eau et dans la goutte une faible quantité d’un même agent tensioactif. Les résultats de leur recherche, qui pourraient contribuer à améliorer l’efficacité des techniques de ciblage thérapeutique, sont publiés le 26 février 2018 dans Nature Communications.

 

Carlo Marangoni a établi en 1865 qu’une goutte déposée sur une surface d’eau s’étale si la tension de surface entre l’eau et l’air excède la somme des tensions de surface goutte/air et goutte/eau. Conformément à ce critère, la goutte de dichlorométhane commence par s’étaler et un film circulaire en expansion se forme autour d’elle. Le dichlorométhane étant très volatil, ce film tend à s’évaporer et un bourrelet se forme à sa périphérie. Des déformations apparaissent progressivement sur ce bourrelet qui finit par se fragmenter, générant un anneau de gouttelettes. L’histoire pourrait s’arrêter après cet événement déjà inhabituel. Mais dans le cas présent, le dichlorométhane dispersé à la surface de l’eau lors du détachement des gouttelettes modifie la capacité d’étalement du système et le film se rétracte.

Fin de l’histoire ? Non ! Le dichlorométhane continuant de s’évaporer et se solubilisant dans l’eau grâce à l’action du tensioactif (bromure de cétyltriméthylammonium), la surface se régénère et les conditions d’étalement se trouvent réinitialisées : tout est réuni pour permettre à la goutte d’entreprendre des pulsations successives. Et celles-ci s’avèrent d’une amplitude et d’une régularité exceptionnelles. Cependant, le dichlorométhane s’évapore toujours et, de manière très reproductible, des branches d’étoile correspondant à des surépaisseurs du film émergent autour de la goutte lorsque le film s’étale pour la quatrième fois.
Une simple péripétie ? Pas du tout… Ces déformations modifient localement la vitesse de rétraction du film, dont les contours adoptent une forme en zig-zag autour des branches d’étoile. Des lignes de micro-gouttes se forment alors le long de ces branches et se rejoignent à la pointe de chacune d’elles, où elles fusionnent avant d’être éjectées et de former des rayons. Un anneau de gouttelettes, des branches bordées de micro-gouttes et des rayons ? Voilà donc une simple goutte qui se transforme en fleur ! Et d’autres vont suivre lors des pulsations suivantes.

Les mystères de cette évolution ont été percés grâce à un dialogue étroit entre expériences et modèles théoriques. C’est la confrontation des prédictions de ces modèles hydrodynamiques à des observations qui a permis d’écrire les grandes lignes de la genèse de cette fleur insolite. Du chemin reste néanmoins à parcourir pour obtenir un modèle complet et prédictif de ce processus d’auto-organisation remarquable qui couple intimement hydrodynamique, chimie et changements de phase.

Ce mode d’éjection des gouttes le long des branches d’étoile rappelle les dispositifs de microfluidique dans lesquels des micro-gouttes, qui constituent autant de réacteurs individuels, circulent dans des micro-canaux. Comment dès lors tirer parti de ce processus d’éjection original ? En utilisant la goutte-mère comme un vecteur destiné à former des assemblages de particules. Ainsi, l’introduction de composés polymères dans la goutte peut trouver des applications pour la vectorisation thérapeutique, en conduisant à la formation d’objets dont la géométrie permettrait une meilleure interaction avec les tissus à traiter. De même, des dopages judicieux de la goutte en nanoparticules peuvent ouvrir des perspectives pour la conception de nouveaux micro-dispositifs électroniques ou optiques.

 

Le CNRS a consacré un de ses épisodes de la série « Zeste de science » à destination du grand public à ces phénomènes.

Pour en savoir plus, consultez :

  • l’interview de Véronique Pimienta dans la Dépêche du Midi ;
  • l’article dédié dans le magazine Pour la Science.