IDeAS team

Smart materials based on self-assembled or nanostructured systems are the main focus of the “Dynamic interfaces and stimuli-responsive assemblies” team.

We use polymers, nanoparticles or surfactants to design stimuli-responsive systems with applications in material science, nanomedecine and environmental science.

We characterise these assemblies at different length scales either under equilibrium or non-equilibrium conditions using a large panel of techniques such as optical, electronic and atomic force microscopies, as well as scattering techniques, rheology, thermal analysis, fluorescence, NMR, etc.

To optimise our materials, we employ design of experiments, multivariate analysis or data modelling.

Research topics

Nanostructured & hybrid soft matter
Soft matter for drug delivery, tissue engineering & imaging
Colloids for environment: (photo)catalysis & CO₂-uptake
Responsive & out-of-equilibrium systems

Team members

permanent members

temporary members on average per year

Team publications

This list of publications is uploaded directly from the IDeAS team’s HAL collection.



202 documents

  • Fang Yin, Pascale Laborie, Barbara Lonetti, Stéphane Gineste, Yannick Coppel, et al.. Dual Thermo- and pH-Responsive Block Copolymer of Poly( N -isopropylacrylamide)- block -Poly( N , N -diethylamino Ethyl Acrylamide): Synthesis, Characterization, Phase Transition, and Self-Assembly Behavior in Aqueous Solution. Macromolecules, 2023, 56 (10), pp.3703-3720. ⟨10.1021/acs.macromol.3c00424⟩. ⟨hal-04109356⟩
  • Luis Torquato, Nelson Hélaine, Yufan Cui, Roisin O'Connell, Jérémie Gummel, et al.. Microfluidic in-line dynamic light scattering with a commercial fibre optic system. Lab on a Chip, 2023, 11, pp.2540-2552. ⟨10.1039/d3lc00062a⟩. ⟨hal-04109364⟩
  • Alexandre Poirot, Corinne Vanucci-Bacqué, Béatrice Delavaux-Nicot, Clarisse Meslien, Nathalie Saffon-Merceron, et al.. Using a diphenyl-bi-(1,2,4-triazole) tricarbonylrhenium(i) complex with intramolecular π–π stacking interaction for efficient solid-state luminescence enhancement. Dalton Transactions, 2023, ⟨10.1039/d2dt03573a⟩. ⟨hal-04023657⟩
  • Guillaume Carnide, Laura Cacot, Yohan Champouret, Vincent Pozsgay, Thomas Verdier, et al.. Direct Liquid Reactor-Injector of Nanoparticles: A Safer-by-Design Aerosol Injection for Nanocomposite Thin-Film Deposition Adapted to Various Plasma-Assisted Processes. Coatings, 2023, 13 (3), pp.630. ⟨10.3390/coatings13030630⟩. ⟨hal-04065604⟩
  • Arij Farhat, Marine Tassé, Mathilde Bocé, D de Caro, Isabelle Malfant, et al.. First example of photorelease of nitric oxide from ruthenium nitrosyl-based nanoparticles. Chemical Physics Letters, 2023, 818, pp.140434. ⟨10.1016/j.cplett.2023.140434⟩. ⟨hal-04034750⟩
  • Marjorie Yon, Laure Gibot, Stéphane Gineste, Pascale Laborie, Christian Bijani, et al.. Assemblies of poly(N -vinyl-2-pyrrolidone)-based double hydrophilic block copolymers triggered by lanthanide ions: characterization and evaluation of their properties as MRI contrast agents. Nanoscale, 2023, 15 (8), pp.3893-3906. ⟨10.1039/d2nr04691a⟩. ⟨hal-03998256⟩
  • Irem Demir-Yilmaz, Malak Souad Ftouhi, Stéphane Balayssac, Pascal Guiraud, Christophe Coudret, et al.. Bubble functionalization in flotation process improve microalgae harvesting. Chemical Engineering Journal, 2023, 452 (part 2), ⟨10.1016/j.cej.2022.139349⟩. ⟨hal-03788878⟩
  • Camille Courtine, Pierre-Louis Brient, Inès Hamouda, Nicolas Pataluch, Pierre Lavedan, et al.. Tetrafluorinated versus hydrogenated azobenzene polymers in water: Access to visible-ligh stimulus at the expense of responsiveness. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, pp.114630. ⟨10.1016/j.jphotochem.2023.114630⟩. ⟨hal-04141881⟩
  • M. Artico, C. Roux, F. Peruch, A.-F. Mingotaud, Cédric Y Montanier. Grafting of proteins onto polymeric surfaces: A synthesis and characterization challenge. Biotechnology Advances, 2023, 64, pp.108106. ⟨10.1016/j.biotechadv.2023.108106⟩. ⟨hal-03989258⟩
  • Yinping Wang, Yannick Coppel, Juliette Fitremann, Stéphane Massou, Christophe Mingotaud, et al.. Gelation Mechanism Revealed in Organometallic Gels: Prevalence of van der Waals Interactions on Oligomerization by Coordination Chemistry. ChemPhysChem, 2023, 24 (14), pp.e202300077. ⟨10.1002/cphc.202300077⟩. ⟨hal-04123076⟩

Latest team news