P3R team

Created in 2007, the “Precision polymers by radical processes” group (P3R) is composed of organic and polymer chemists who develop original polymer materials using radical chemistry.

P3R has a longstanding experience in reversible addition-fragmentation chain transfer (RAFT) polymerisation. This includes the study of the structure-reactivity relationship of original classes of RAFT agents, RAFT control of “tricky” monomers, and the synthesis of functional block copolymers with targeted properties.
In recent years, we made a clear shift in the way we design our polymers towards materials of enhanced sustainability. For instance, new methodologies for making (chemically) degradable polymers by radical ring-opening copolymerization have been successfully developed.
Another recent strategic area is the design of dynamic polymer materials, in particular nanostructured vitrimers and carbon-fiber reinforced vitrimer materials for the aerospace sector.

We attach particular attention to the exploitation of our research results through a large number of patent applications with some examples of commercial success in collaboration with industrial partners.

Team leader
Keywords
mots-clés de l'équipe P3R

Research topics

Pushing back the boundaries of RAFT polymerisation
Radical polymerisation for degradable polymers
Dynamic polymer materials

Team members

permanent members

temporary members on average per year

Team publications

This list of publications is uploaded directly from the P3R team’s HAL collection.



97 documents

  • Anna Stasiuk, Alexis Millan, Elena Rigo, Mathias Destarac, Marc Guerre. Enhancing the robustness of thiol–thioester covalent adaptable networks through reversible thiol–Michael masking. Polymer Chemistry, 2026, ⟨10.1039/d5py01081k⟩. ⟨hal-05447461⟩
  • Edoardo Albertini, Mirko Busto, Sara Dalle Vacche, Gian Andrea Blengini, Marc Guerre, et al.. Bio-based cellulose-filled vitrimers for 3D printing via liquid deposition modeling: Rheological tuning and environmental assessment. Chemical Engineering Journal, 2026, 528, pp.172399. ⟨10.1016/j.cej.2025.172399⟩. ⟨hal-05445810⟩
  • Alexis Millan, Alexandre Wodrinski, Marc Guerre. Disulfide‐Initiated Addition–Fragmentation Chain Transfer in Allyl Sulfide‐Based Vitrimers. Angewandte Chemie International Edition, 2025, ⟨10.1002/anie.202519880⟩. ⟨hal-05338640⟩
  • Malcolm Kelland, Mathias Destarac, Olivier Coutelier, Alexis Dupre-Demorsy, Tsuyoshi Ando, et al.. Kinetic Hydrate Inhibitors─Which is Best, Block or Statistical Copolymers?. Energy & Fuels, 2024, ⟨10.1021/acs.energyfuels.4c01375⟩. ⟨hal-04621385⟩
  • Karine Labastie, Vincent Schenk, Raffaele D'Elia, Philippe Olivier, Mathias Destarac, et al.. Vitrimers : Potential and Processability. JST Fin de Vie des Composites AMAC, IMT Mines Albi, May 2024, IMT Mines Albi, France. ⟨hal-04808611⟩
  • Maksym Odnoroh, Christophe Mingotaud, Olivier Coutelier, Jean-Daniel Marty, Mathias Destarac. Gem-bisphosphonic acid-based double hydrophilic block copolymers: RAFT synthesis and comparative assembly with gadolinium ions for the formation of MRI contrast agents. European Polymer Journal, 2024, 210, pp.112963. ⟨10.1016/j.eurpolymj.2024.112963⟩. ⟨hal-04580909⟩
  • Solène Guggari, Fiona Magliozzi, Samuel Malburet, Alain Graillot, Mathias Destarac, et al.. Vanillin-based dual dynamic epoxy building block: a promising accelerator for disulfide vitrimers. Polymer Chemistry, 2024, 15 (13), pp.1347-1357. ⟨10.1039/d4py00038b⟩. ⟨hal-04533696⟩
  • Oleksandr Ivanchenko, Mathias Destarac. 1,1′- Thiocarbonyldiimidazole Radical Copolymerization for the Preparation of Degradable Vinyl Polymers. ACS Macro Letters, 2023, 13 (1), pp.47-51. ⟨10.1021/acsmacrolett.3c00676⟩. ⟨hal-04419665⟩
  • Mohamed Azzouzi, Omar Azougagh, Abderrahim Ait Ouchaoui, Salah Eddine El Hadad, Stéphane Mazières, et al.. Synthesis, Characterizations, and Quantum Chemical Investigations on Imidazo[1,2- a ]pyrimidine-Schiff Base Derivative: ( E )-2-Phenyl- N -(thiophen-2-ylmethylene)imidazo[1,2- a ]pyrimidin-3-amine. ACS Omega, 2023, 9 (1), pp.837-857. ⟨10.1021/acsomega.3c06841⟩. ⟨hal-04401940⟩
  • Maksym Odnoroh, Olivier Coutelier, Christophe Mingotaud, Mathias Destarac, Jean-Daniel Marty. Diblock versus block-random copolymer architecture effect on physical properties of Gd3+-based hybrid polyionic complexes. Journal of Colloid and Interface Science, 2023, 649, pp.655-664. ⟨10.1016/j.jcis.2023.06.116⟩. ⟨hal-04189724⟩

Latest team news