P3R team
Created in 2007, the “Precision polymers by radical processes” group (P3R) is composed of organic and polymer chemists who develop original polymer materials using radical chemistry.
P3R has a longstanding experience in reversible addition-fragmentation chain transfer (RAFT) polymerisation. This includes the study of the structure-reactivity relationship of original classes of RAFT agents, RAFT control of “tricky” monomers, and the synthesis of functional block copolymers with targeted properties.
In recent years, we made a clear shift in the way we design our polymers towards materials of enhanced sustainability. For instance, new methodologies for making (chemically) degradable polymers by radical ring-opening copolymerization have been successfully developed.
Another recent strategic area is the design of dynamic polymer materials, in particular nanostructured vitrimers and carbon-fiber reinforced vitrimer materials for the aerospace sector.
We attach particular attention to the exploitation of our research results through a large number of patent applications with some examples of commercial success in collaboration with industrial partners.
Research topics
Team members
permanent members
temporary members on average per year
Team publications
This list of publications is uploaded directly from the P3R team’s HAL collection.
- Miguel Rosales-Guzmán, Odilia Pérez-Camacho, Román Torres-Lubián, Simon Harrisson, Ulrich Schubert, et al.. Kinetic and Copolymer Composition Investigations of the Free Radical Copolymerization of 1-Octene with Glycidyl Methacrylate. Macromolecular Chemistry and Physics, 2018, 219 (14), pp.1800084. ⟨10.1002/macp.201800084⟩. ⟨hal-02194895⟩
- Cécile Barthet, James Wilson, Arnaud Cadix, Mathias Destarac, Christophe Chassenieux, et al.. Influence of sodium dodecyl sulfate on the kinetics and control of RAFT/MADIX polymerization of acrylamide. Journal of Polymer Science Part A: Polymer Chemistry, 2018, 56 (7), pp.760-765. ⟨10.1002/pola.28949⟩. ⟨hal-02194921⟩
- Olivier Coutelier, S. Moins, J. de Winter, O. Coulembier, Mathias Destarac, et al.. Scope and limitations of ring-opening copolymerization of trimethylene carbonate with substituted γ-thiolactones. Polymer Chemistry, 2018, 9 (20), pp.2769-2774. ⟨10.1039/C8PY00127H⟩. ⟨hal-02194909⟩
- H Bessaies-Bey, J Fusier, Simon Harrisson, Mathias Destarac, S Jouenne, et al.. Impact of polyacrylamide adsorption on flow through porous siliceous materials: State of the art, discussion and industrial concern. Journal of Colloid and Interface Science, 2018, 531, pp.693-704. ⟨10.1016/j.jcis.2018.07.103⟩. ⟨hal-01894835⟩
- Simon Harrisson. The downside of dispersity: why the standard deviation is a better measure of dispersion in precision polymerization. Polymer Chemistry, 2018, 9 (12), pp.1366-1370. ⟨10.1039/C8PY00138C⟩. ⟨hal-02194916⟩
- Nathalie Pinkerton, Khadidja Hadri, Baptiste Amouroux, Leah Behar, Christophe Mingotaud, et al.. Quench ionic flash nano precipitation as a simple and tunable approach to decouple growth and functionalization for the one-step synthesis of functional LnPO 4 -based nanoparticles in water. Chemical Communications, 2018, 54 (68), pp.9438-9441. ⟨10.1039/C8CC04163F⟩. ⟨hal-02194894⟩
- Cécile Barthet, James Wilson, Arnaud Cadix, Mathias Destarac, Christophe Chassenieux, et al.. Micellar RAFT/MADIX Polymerization. ACS Macro Letters, 2017, 6 (12), pp.1342-1346. ⟨10.1021/acsmacrolett.7b00791⟩. ⟨hal-02194956⟩
- Ihor Kulai, Nathalie Saffon-Merceron, Zoia Voitenko, Stéphane Mazières, Mathias Destarac. Alkyl Triarylstannanecarbodithioates: Synthesis, Crystal Structures, and Efficiency in RAFT Polymerization. Chemistry - A European Journal, 2017, 23 (63), pp.16066-16077. ⟨10.1002/chem.201703412⟩. ⟨hal-02194963⟩
- Xuan Liu, Mingxi Wang, Simon Harrisson, Antoine Debuigne, Jean-Daniel Marty, et al.. Enhanced Stabilization of Water/scCO 2 Interface by Block-Like Spontaneous Gradient Copolymers. ACS Sustainable Chemistry & Engineering, 2017, 5 (11), pp.9645-9650. ⟨10.1021/acssuschemeng.7b02779⟩. ⟨hal-02194962⟩
- Anthony Phimphachanh, Emilie Molina, Mélody Mathonnat, Mael Bathfield, Julien Reboul, et al.. Synthesis of stimuli-responsive double hydrophilic block copolymers by ATRP and RAFT and their use as nanostructure-directing agents of mesoporous silica materials. 254th ACS National Meeting, Aug 2017, Washington, United States. pp.2719554. ⟨hal-01804723⟩
Latest team news
Joséphine de Calbiac, PhD student at Softmat, defended her thesis on vitrimer matrix composites for space applications
Joséphine carried out her research in the P3R team at the Softmat laboratory, in close collaboration with Cnes and IRT Saint Exupéry. On 5th of December, she defended her thesis entitled: "Vitrimer...
A radical-based new approach to high-performance recyclable plastics
Researchers from the P3R team at Softmat have developed new vitrimers by developing heat-activated radical chemistry. This novel approach gives these materials, which are resistant, repairable and...
Ecolanka, a startup offering disruptive innovation in the field of degradable polymers, spun off from Softmat
Based on research conducted in the P3R team by Mathias Destarac and Sasha Ivanchenko (awarded the 2023 iPhD Grand Prix by the French Ministry of Research and operated by BPI France for this...





